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Correction schemes for the LHC lattice at collision

T. Sen, N. Gelfand and W. Wan, FNAL, Batavia, IL 60510

Abstract

Normal form analysis and tracking results show that both
normal and skew resonances are driven strongly by the non-
linear fields of the IR quadrupoles. We report here on the
possibility of improving the dynamic aperture by compen-
sating these resonances with the use of correctors placed in
the IRs. The effectiveness of local correction schemes in
the presence of beam-beam interactions is also studied.

1 INTRODUCTION

The target dynamic aperture for the LHC at collision is 12σ
at 105turns. The dynamic aperture with only random errors
from version 2.0 of the Fermilab and KEK error harmonics
is about 11σ at 105turns [1]. Systematic uncertainties and
errors in the ends reduce the dynamic aperture to about 9σ
at 105turns [2]. Local correction schemes based on mini-
mizing the action kick from each multipole [2] have been
investigated as a means of increasing the dynamic aperture
to the target value. Here we investigate a global compen-
sation method based on minimizing low order resonances
as a complementary method to improve the dynamic aper-
ture. We also examine the efficacy of idealized versions of
local correction schemes when beam-beam interactions are
included.

2 RESONANCE STRENGTHS FROM
TRACKING

The basic lattice was derived from MAD 5.1. In the high
luminosity insertions, Fermilab error harmonics V2.0 were
used for the quadrupoles in IR5 and KEK error harmon-
ics V2.0 were used for the quadrupoles in IR1. This is the
so-called “unmixed case”. Using this lattice, the program
COSY INFINITY [3] was used to generate a Taylor map.
The arcs are represented by 5th order maps and the IRs are
represented by 9th order maps. These are concatenated to
generate a single map for the lattice. The Taylor map is
tracked to calculate either the dynamic aperture or ampli-
tude growth.

Tune scans were done to identify the resonances that
drive amplitude growth. Particles were placed at initial am-
plitudes of 3, 5 and 7 σ and their amplitude growth was
recorded over 1000 turns at each tune. The tune scan was
done in two ways: 1) the vertical tuneQy was held fixed and
the horizontal tuneQx was varied, 2)Qx was held fixed and
Qy was varied. This was done for 30 seeds.

Figure 1 shows the amplitude growth in both planes, with
seed 1 for multipole errors, for a particle initially at 5σ as
a result of tune scans in the horizontal and vertical planes.
In this case, the Qx + 2Qy and 2Qx + Qy resonances are
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Figure 1: Amplitude growth with horizontal (top) and ver-
tical (bottom) tune scans for seed1. For the horizontal tune
scan, the vertical tune is kept constant at 0.32 while for the
vertical scan the horizontal tune is kept constant at 0.31.
We have identified some of the resonances that are asso-
ciated with large amplitude growth. Note that the normal
Qx+2Qy and skew 2Qx+Qy resonances have overlapped
producing a broad resonance. This seed had the smallest
dynamic aperture of all the seeds tracked.

of sufficiently large widths to produce a broad resonance.
The other resonance causing a large amplitude growth is the
fourth order resonance 2Qx + 2Qy. Figure 2 shows the re-
sults of similar scans with seed 9. Again, the third order
sum resonances and the 2Qx + 2Qy resonance cause large
amplitude growth.

In the majority of cases, the skew resonance 2Qx + Qy
and the fourth order normal resonance 2Qx + 2Qy were
found to cause large amplitude growth. Figure 3 shows nor-
malized histograms over 30 seeds of the relative amplitude
growth due to these resonances. For example, in about 70%
of the cases the skew 2Qx + Qy resonance caused a rel-
ative amplitude growth of more than 104. These tracking
results show that even with the random nature of the multi-
pole errors, the same, relatively few, low order resonances
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Figure 2: Amplitude growth with horizontal (left) and ver-
tical (right) tune scans for seed9. In this case, the sum third
order resonances Qx+2Qy and 2Qx+Qy are distinct. The
dynamic aperture for this seed was near the average over all
the seeds.
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Figure 3: Normalized histograms of the relative amplitude
growth (shown on a log scale) due to the resonances 2Qx+
Qy = 186 (left) and 2Qx + 2Qy = 245 (right). The his-
tograms represent data from tracking with 30 seeds. For ex-
ample, in more than 70% of the cases, the 2Qx+Qy = 186
resonance leads to a 104fold or larger amplitude growth.

are responsible for amplitude growth. This encourages the
hope that compensating these resonances may increase the
dynamic aperture. At the nominal tunes (Qx = 63.31,
Qy = 59.32), the 4th order resonance 2Qx + 2Qy = 245
should not be excited. In this paper we choose to minimize
only third order resonances.

3 RESONANCE STRENGTHS FROM
NORMAL FORMS

The normal formN of a mapM is obtained via

N = A−1MA (1)

where
A = e:F : (2)

The notation :: signifies a Poisson bracket operation. The
generating function F of the similarity transformation is

F =
∑
j,k,l,m

fjklmJ
(j+k)/2
x J(l+m)/2

y e−iψj,k,l,m (3)

where ψj,k,l,m = (j−k)(ψx+ψx,0)+(l−m)(ψy +ψy,0).
and Jx, Jy are the linear actions. The resonances of order
n = |j−k|+ |l−m| are nxQx±nyQy ≡ (j−k)Qx±(l−
m)Qy = p. These resonances also appear in higher orders
n+ 2, n+ 4, ... in the generating function. The strength of
an nth order resonance is taken to be the absolute value of
the complex generating function.

F(nx, ny) = |
∑
j,k,l,m

j−k=nx,l−m=ny

fjklmJ
(j+k)/2
x J(l+m)/2

y e−iψj,k,l,m|

(4)
COSY INFINITY is used to generate the normal form of the
map and also evaluate the resonance strengths.

Third order resonance strengths, both normal and skew,
were calculated at an amplitude of 8σ, close to the dynamic
aperture. These resonance strengths included the contri-
butions from higher order multipoles (the “sub-resonance”
contributions). For example, the resonance Qx + 2Qy has
primary contributions from b3 and subsidiary contributions
from b5, b7, b9. Similarly the skew resonance 2Qx+Qy has
primary contributions from a3 and subsidiary contributions
from a5, a7, a9.

4 CORRECTION WITH SEXTUPOLES

Correcting all four third order sum resonances 3Qx, Qx +
2Qy, 2Qx +Qy, 3Qy requires two sextupoles for each res-
onance or eight in all. In order to minimize the sextupole
strengths, the phase advance between the sextupoles cor-
recting a resonance have to be chosen appropriately. For ex-
ample, the optimal phase advances between the sextupoles
correcting theQx+2Qy resonance satisfy ∆ψx+2∆ψy =
π/2. In this case the corrector strengths are minimal and
both the real and imaginary parts of the driving term can
be corrected. However in the study reported here, we re-
stricted ourselves to placing sextupole correctors in the
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Figure 4: Placing of the 4 families of sextupoles for reduc-
ing the third order resonance strengths.

MCBX and MCQS packages in the IRs. The phase ad-
vances between them are odd multiples of π and therefore
far from optimal. The β functions in these correctors how-
ever are larger than they would be for sextupole correctors
placed in the arcs.

In IR1 and IR5, normal sextupoles, labelled NS1,...NS4
in Figure 4, are placed in MCBX packages between Q2a,
Q2b and after Q3 on both sides of the IP for a total of eight
normal sextupoles. Within a single IR, the normal sex-
tupoles in a family e.g. NS1, -NS1, are placed at locations
of nearly equal beta functions in both planes and have the
same strength but with opposite signs. Their contribution
to the linear chromaticity is therefore zero while the phase
advance between them is nearly π. A total of four sex-
tupole strengths are available to correct the real and imagi-
nary parts of the two normal resonances. Skew sextupoles,
labelled SS1,... SS4 in Figure 4, are placed in MCQS pack-
ages after Q2b, also on both sides of the IP in IR1 and
IR5, for a total of four skew sextupoles to correct the two
skew resonances. Equal weighting was given to these four
resonances and COSY INFINITY was used to minimize
these resonances using up to the maximum sextupole field
of 0.067T at the reference radius of 17mm.

Table 1 shows the resonance strengths after correction as
a fraction of their original values before correction for ten
seeds. The resonance strength here is the absolute value of
the complex driving term. In most of these cases, one or
more of the resonance strengths are lowered. Reducing all
the sum third order resonances does not seem possible in
general with the available sextupole strengths.

The dynamic aperture was calculated after the correc-
tion of these sum resonances. Figure 5 shows the dynamic
aperture in amplitude space. At each horizontal amplitude,
the dynamic aperture is averaged over ten random seeds for
the multipole errors. There was no improvement in the dy-
namic aperture along the y axis. This could be because the
vertical tune is sufficiently close to the 3Qy resonance that
reducing this resonance strength by factors of two or less is

Seed f(3,0) f(0,3) f(2,1) f(1,2) ∆〈DA〉
1 0.99 0.61 0.45 0.19 0.65
2 1.07 0.75 0.57 1.42 0.19
3 0.06 1.64 0.05 0.23 2.58
4 0.97 0.81 1.01 0.98 0.31
5 0.36 1.03 0.78 30.04 0.52
6 0.35 1.91 0.94 0.17 0.59
7 0.15 0.37 1.85 0.60 -0.29
8 0.81 0.27 0.53 1.27 -0.88
9 0.41 0.50 0.61 1.34 0.20
10 1.04 0.05 1.43 2.92 0.84

Table 1: Fractional change in third order resonance
strengths using sextupoles, seed by seed. f(nx, ny) is the
relative strength of the nxqx + nyqy = n resonance after
and before correction. The last column shows the change
in dynamic aperture ∆〈DA〉 due to these sextupoles.
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Figure 5: Dynamic aperture at different regions in ampli-
tude space with the use of sextupoles. At each value of the
initial horizontal amplitude, the dynamic aperture is aver-
aged over 10 random seeds. There is little change in the dy-
namic aperture along either the x or y axis. The largest gain
in dynamic aperture, about 2σ, occurs close to the diagonal.
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the tune shift with amplitude.

not sufficient to improve the dynamic aperture. The largest
improvement is seen close to the diagonal. The improve-
ment in dynamic aperture along the x axis is also small.

In those cases where resonances are dramatically re-
duced, there is a significant improvement in the dynamic
aperture. For example, with seed 3, both the 3Qx and
2Qx + Qy resonances are down to about 5% and the dy-
namic aperture increases by 2.6σ. With seed 10, the 3Qy
resonance is down to 5% of its original strength while the
others have increased, yet the dynamic aperture increases
by 0.8σ. It is clear that overall, the gain in dynamic aper-
ture by attempting to minimize all the sum third order res-
onances with the present locations of the sextupoles is only
modest. It is more likely that the resonances can be bet-
ter compensated if the sextupoles are placed in the arcs so
that the phase advances can be chosen appropriately. Other
strategies that are possible include weighting one or two of
the resonances more strongly than the others in doing the
resonance correction. This is being explored.

5 CORRECTION WITH OCTUPOLES

Another way to avoid excitation of dangerous resonances is
to reduce the tune footprint of the beam. The tune shift with
amplitude depends quadratically on the sextupole strengths
but linearly on the octupole strengths. Octupoles are there-
fore better suited for this purpose. There are three detuning
terms to be minimized: ∂Qx/∂Jx, ∂Qx/∂Jy, ∂Qy/∂Jy.
Three pairs of octupoles are used with members in a pair set
to the same strength and placed at nearly the same values
of the beta functions. Members of the 3 families labelled
O1, O2, O3 are shown in Figure 6.

The main purpose of the octupoles is to reduce the tune
shift with amplitude. Figure 7 shows that the tune footprint
for seed 1 is significantly smaller when the octupoles are
used. However the orbit is not centered in the octupoles
due to the crossing angle. Consequently they also affect
the third order resonance strengths due to the feed-down
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Figure 7: Tune footprint with and without octupoles for
seed1.

Seed f(3,0) f(0,3) f(2,1) f(1,2) ∆〈DA〉
1 0.83 0.27 0.08 0.18 1.89
2 0.42 2.26 0.85 1.24 -1.46
3 0.34 1.87 0.49 0.22 0.55
4 3.29 0.52 4.90 0.84 0.57
5 0.86 0.83 1.30 25.70 0.04
6 0.32 1.42 0.62 0.22 0.17
7 0.09 0.55 1.93 0.62 2.61
8 2.46 0.77 0.14 1.89 1.57
9 0.57 1.19 1.52 1.23 1.65
10 1.05 0.53 0.31 1.07 -1.47

Table 2: Fractional third order resonance strengths after re-
ducing the tune spread with octupoles.

into sextupole components. Table 2 shows the fractional
resonance strengths after using the octupoles. The changes
that occur with the octupoles are not controlled. For ex-
ample, with seed 1 all the sum resonances were reduced
while with seed 9, three of the four sum resonances in-
creased in strength. In order to check that the feed-down
from the octupoles is responsible for the changes in reso-
nance strengths, the octupoles were displaced transversely
so that they were centered on the closed orbit. In this case,
there was no change in the third order resonance strengths.

Figure 8 shows the average dynamic aperture over 10
seeds with and without the use of octupoles. The average
increase in dynamic aperture with the use of the octupoles
is somewhat greater than that obtained with the sextupoles.
In particular, the dynamic aperture also increases along the
y axis. Reducing the tune shift at large amplitudes therefore
appears more beneficial in avoiding the effects of the 3Qy
resonance.
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Figure 8: Dynamic aperture at different regions in ampli-
tude space with the use of octupoles. At each value of the
initial horizontal amplitude, the dynamic aperture is aver-
aged over 10 random seeds. The octupoles help to increase
the dynamic aperture along the y axis as well as close to the
diagonal.

Seed f(3,0) f(0,3) f(2,1) f(1,2) ∆〈DA〉
1 0.49 0.18 0.07 0.10 2.69
2 0.47 1.74 0.72 1.40 -1.03
3 0.24 3.35 0.40 0.16 0.22
4 2.67 0.59 2.02 1.09 0.75
5 0.33 0.93 0.94 49.87 0.41
6 0.33 1.32 0.55 0.22 -0.10
7 0.12 0.14 0.29 0.48 2.49
8 1.31 0.98 1.48 1.58 1.69
9 0.48 0.97 1.29 0.98 2.22
10 0.74 0.07 1.07 1.42 0.49

Table 3: Fractional third order resonance strengths after
correction with octupoles and sextupoles.

6 SEXTUPOLES AND OCTUPOLES
TOGETHER

When both sextupoles and octupoles are used, a two step
procedure is necessary. Due to the fact that octupoles
change the third order resonance strengths via feed-down, it
is difficult to do a simultaneous compensation of resonance
strengths and tune shifts with amplitude. In the two step
procedure, first octupoles are used to reduce the tune foot-
print and a new map of the lattice is obtained with these oc-
tupole correctors. The third order resonances of this new
map are then compensated with sextupoles.

Table 3 shows the fractional resonance strengths after
correction with the octupoles and sextupoles. Compared to
the fractional strengths shown in Table 2, most of the res-
onance strengths have decreased. For example, with seed
1 the 3Qx resonance is reduced to nearly half its value
with octupoles alone and the increase in dynamic aperture
changes from 1.89σ to 2.69σ.
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Figure 9: Dynamic aperture at different regions in ampli-
tude space with the use of sextupoles and octupoles. At
each value of the initial horizontal amplitude, the dynamic
aperture is averaged over 10 random seeds. As with oc-
tupoles alone, sextupole and octupole correctors help to im-
prove the dynamic aperture at almost all angles in physical
space.
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of the initial dynamic aperture for each of the correction
schemes.

Figure 9 shows the average dynamic aperture over 10
seeds with and without the use of sextupoles and octupoles.
Again, as was the case with only octupoles, there is some
improvement in the dynamic aperture along the y-axis.
Overall, the gain in dynamic aperture is larger than with ei-
ther sextupoles or octupoles alone.

Figure 10 shows the change in dynamic aperture as a
function of the initial aperture for the different schemes. It
is clear that the variation in dynamic aperture from seed
to seed due to the action of the sextupoles is quite differ-
ent from the variation due to the octupoles. For example,
the maximum increase with sextupoles occured with seed
1 while the maximum with octupoles occured with seed 7.
Octupoles were most effective in increasing the smallest



dynamic aperture (seed 1). In almost all cases, the addition
of sextupoles to octupoles helped improve the quality of the
correction.

Correction scheme 〈DA〉 ± σ〈DA〉 Max ∆〈DA〉
No correction 10.5 ± 1.4
Sextupoles 11.0 ± 1.4 2.58
Octupoles 11.2 ± 1.4 2.61
Sextupoles & octupoles 11.5 ± 1.2 2.69

Table 4: The dynamic aperture(DA) with the use of low-
order correctors. 〈DA〉 is calculated after 103 turns and av-
eraged over 10 random seeds for the multipole errors. The
last column shows the maximum increase in DA over these
seeds with the use of the correctors.

Table 4 summarizes the change in the dynamic aperture,
averaged over emittance space and 10 seeds, obtained with
use of the low order correctors. On average, the sextupoles
increase the dynamic aperture by 0.5σ, octupoles by 0.7σ
and the two together by 1σ. These schemes can be im-
proved. One possibility is to identify the important res-
onances, seed by seed, and compensate only those reso-
nances. For the preliminary study reported here, we com-
pensated all the third order sum resonances for every seed.
Lower order resonances such as the second order Qy −
Qx resonance also appear to be associated with amplitude
growth (seen in Figures 1 and 2). This is one of several res-
onances that can be compensated by octupoles.

7 LOCAL CORRECTION SCHEMES
WITH BEAM-BEAM

Beam-beam interactions have a significant impact on the
dynamic aperture [1]. We have examined the impact of
idealized versions of local correction schemes when beam-
beam interactions are included. In the idealized versions we
set to zero the systematic and random value of the specified
multipoles. Table 5 shows the local correction schemes 2
and 4 as proposed in [2]. In practice, the local correction
schemes will not be quite as effective as the idealized ver-
sions used here.

The tracking results reported in this section, both with
and without beam-beam interactions, were done with the
program TEVLAT [4]. The lattice was also derived from

Scheme Zeroed random multipoles
2 (b3, b4, b5, b6) & (a3, a4, a5, a6)
4 (b3, b4, b5, b6, b10) & (a3, a4, a5, a6)

Table 5: Idealized versions of the local correction schemes
2 and 4 where the systematic and random values of the
specified multipoles are set to zero. Tracking calculations
in this paper did not include the systematic uncertainties
(dbn, dan).
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Figure 11: Dynamic aperture with and without the beam-
beam interactions without any correction. Particles are
tracked for 105 turns over 10 angles in emittance space.
The average reduction in dynamic aperture due to the beam-
beam is 1.3σ.
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Figure 12: Dynamic aperture with and without the beam-
beam interactions with the idealized local correction
scheme 2. Particles are tracked for 105 turns over 10
angles in emittance space.

MAD5.1 but the IR quadrupoles were mixed, i.e. Fermilab
error harmonics V2.0 were used in Q2a, Q2b and KEK V2.0
were used in Q1 and Q3.

In order to be consistent in evaluating the correction
schemes, we will compare the dynamic aperture with and
without the beam-beam interactions at the same number of
turns. We have found that when the beam-beam interactions
are included, particles must be tracked for a minimum of
105 turns in order to get meaningful results [1]. It is im-
portant to note that the dynamic aperture with beam-beam
interactions drops faster with the number of turns than with-
out.

Figure 11 shows the dynamic aperture for five seeds with
and without the beam-beam interactions when no correction
is applied.
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Figure 12 shows the dynamic aperture in both cases with
the idealized scheme 2. The dynamic aperture with the
beam-beam improves by about 1σ compared to the case
when no corrections are applied. As expected, the improve-
ment is smaller compared to the case when the beam-beam
interactions are not included.

Figure 13 shows the dynamic aperture in both cases with
the idealized scheme 4. In this case, the dynamic aper-
ture without beam-beam improves dramatically by about
4.7σ compared to the case without correction. When the
beam-beam interactions are included, the dynamic aperture
increases by 3.2σ to 12.4σ. This scheme is clearly quite
effective in improving the dynamic aperture, albeit by a
smaller amount, even when the beam-beam interactions are
included. Most of the increase is due to eliminating the
large 〈b10〉 = −0.25 contribution to the dynamic aperture.

Correction Scheme No Beam-Beam With Beam-beam
〈DA〉 ± σ〈DA〉 〈DA〉 ± σ〈DA〉

No correction 10.52± 1.04 9.21 ± 0.88
Scheme 2 12.31± 1.33 10.35 ± 1.19
Scheme 4 15.17± 1.40 12.41 ± 1.29

Table 6: Average dynamic aperture without and with beam-
beam and different idealized local correction schemes. The
dynamic aperture is calculated after 105 turns and averaged
over 5 random seeds. No systematic uncertainties dbn, dan
are included.

Table 6 summarizes the average change in dynamic aper-
ture with and without the beam-beam interactions for the
different correction schemes.

8 SUMMARY

Using only sextupoles and octupoles in IR1 and IR5 we
attempted to increase the dynamic aperture. These multi-
poles were used to compensate sum third order resonances
and reduce the tune shift with amplitude. Ten random
seeds were used for the multipole errors. Averaged over the
seeds, these multipoles increased the dynamic aperture by
about 1σ. The maximum increase in dynamic aperture over
these seeds is 2.7σ. This increase is encouraging because it
demonstrates that resonance compensation works in prin-
ciple. Our use of the sextupoles was constrained by plac-
ing them in the IRs. The relevant phase advances between
these sextupoles correcting a resonance is an odd multiple
of π while at optimal locations these phase advances would
be odd multiples of π/2. This can be achieved by placing
the sextupole correctors in the arcs. Resonance compensa-
tion may be further improved by first doing a more detailed
search for the important resonances at the working point,
using the method of frequency analysis for example. Low
order coupling resonances such as Qy − Qx may require
a dedicated compensation. Important resonances of higher
order than thirdwill require higher order multipoles. We be-
lieve that resonance compensation can be a useful comple-
ment to the local correction scheme.

We have also investigated the efficacy of idealized ver-
sions of the local correction schemes when beam-beam in-
teractions are included. As expected, the increase in dy-
namic aperture is not as large compared to the case when
beam-beam interactions are not included. However the in-
crease with scheme 4 (where b10 = 0 ) is still significant,
about 3σ. This demonstrates that the local correction can
still be very useful, even in the presence of the beam-beam
interactions. We believe that in order to improve upon the
local correction, compensation of the beam-beam driven
resonances should be investigated.
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